对于非稳定时间序列,可通过差分的方法将其化为稳定序列,然后才可建立经典的回归分析模型。
如:建立人均消费水平(Y)与人均可支配收入(X)之间的回归模型:
Y t = α0 + α1 X t + μ t
如果Y与X具有共同的向上或向下的变化趋势,进行差分,X,Y成为平稳序列,建立差分回归模型得:
Δ Y t = α1Δ X t + v t 式中, v t = μ t − μ t − 1 然而,这种做法会引起两个问题:(1)如果X与Y间存在着长期稳定的均衡关系 Y t = α0 + α1 X t + μ t 且误差项μ t不存在序列相关,则差分式 Δ Y t = α1Δ X t + v t 中的 v t是一个一阶移动平均时间序列,因而是序列相关的;(2)如果采用差分形式进行估计,则关于变量水平值的重要信息将被忽略,这时模型只表达了X与Y间的短期关系,而没有揭示它们间的长期关系。
因为,从长期均衡的观点看,Y在第t期的变化不仅取决于X本身的变化,还取决于X与Y在t-1期末的状态,尤其是X与Y在t-1期的不平衡程度。 另外,使用差分变量也往往会得出不能令人满意回归方程。
例如,使用Δ Y1 = Δ X t + v t 回归时,很少出现截距项显著为零的情况,即我们常常会得到如下形式的方程: 式中, (1)
在X保持不变时,如果模型存在静态均衡(static equilibrium),Y也会保持它的长期均衡值不变。
但如果使用(1)式,即使X保持不变,Y也会处于长期上升或下降的过程中,这意味着X与Y间不存在静态均衡。这与大多数具有静态均衡的经济理论假说不相符。可见,简单差分不一定能解决非平稳时间序列所遇到的全部问题,因此,误差修正模型便应运而生。
">编辑] 误差修正模型的概述
误差修正模型(Error Correction Model,简记为ECM)是一种具有特定形式的计量经济学模型,它的主要形式是由Davidson、 Hendry、Srba和Yeo于1978年提出的,称为DHSY模型。
为了便于理解,我们通过一个具体的模型来介绍它的结构。
假设两变量X与Y的长期均衡关系为:
Y t = α0 + α1 X t + μ t (2)
由于现实经济中X与Y很少处在均衡点上,因此实际观测到的只是X与Y间的短期的或非均衡的关系,假设具有如下(1,1)阶分布滞后形式
(3)
该模型显示出第t期的Y值,不仅与X的变化有关,而且与t-1期X与Y的状态值有关。
由于变量可能是非平稳的,因此不能直接运用OLS法。对(3)式适当变形得: (4)
式中,λ = 1 − μ, ,
如果将(4)中的参数α0,α1与 Y t = α0 + α1 X t + μ t中的相应参数视为相等,则(4)式中括号内的项就是t-1期的非均衡误差项。
(4)式表明:Y的变化决定于X的变化以及前一时期的非均衡程度。同时,(4)式也弥补了简单差分模型Δ Y1 = Δ X t + v t的不足,因为该式含有用X、Y水平值表示的前期非均衡程度。因此,Y的值已对前期的非均衡程度作出了修正。(4)式称为一阶误差修正模型(first-order error correction model)。
(4)式可以写成:
其中:ecm表示误差修正项。由分布滞后模型 知:一般情况下|μ|<1 ,由关系式μ得0<λ<1。可以据此分析ecm的修正作用:
(1)若(t-1)时刻Y大于其长期均衡解α0 + α1 X,ecm为正,则(-λecm)为负,使得Δ Y t减少;
(2)若(t-1)时刻Y小于其长期均衡解α0 + α1 X,ecm为负,则(-λecm)为正,使得Δ Y t增大。
体现了长期非均衡误差对 Y t的控制。
需要注意的是:在实际分析中,变量常以对数的形式出现。
其主要原因在于变量对数的差分近似地等于该变量的变化率,而经济变量的变化率常常是稳定序列,因此适合于包含在经典回归方程中。
于是:
(1)长期均衡模型
Y t = α0 + α1 X t + μ t
中的α1可视为Y关于X的长期弹性(long-run elasticity)
(2)短期非均衡模型
中的β1可视为Y关于X的短期弹性(short-run elasticity)。
更复杂的误差修正模型可依照一阶误差修正模型类似地建立。
">编辑] 误差修正模型的建立
(1)Granger 表述定理
误差修正模型有许多明显的优点:如 a)一阶差分项的使用消除了变量可能存在的趋势因素,从而避免了虚假回归问题; b)一阶差分项的使用也消除模型可能存在的多重共线性问题; c)误差修正项的引入保证了变量水平值的信息没有被忽视; d)由于误差修正项本身的平稳性,使得该模型可以用经典的回归方法进行估计,尤其是模型中差分项可以使用通常的t检验与F检验来进行选取。
因此,一个重要的问题就是:是否变量间的关系都可以通过误差修正模型来表述?
就此问题,Engle 与 Granger 1987年提出了著名的Grange表述定理(Granger representaion theorem):
如果变量X与Y是协整的,则它们间的短期非均衡关系总能由一个误差修正模型表述:
Δ Y t = l a g g e d(Δ Y,Δ X) − λμ t − 1 + ε t
式中,μ t − 1是非均衡误差项或者说成是长期均衡偏差项, λ是短期调整参数。
对于(1,1)阶自回归分布滞后模型
如果 Yt~I(1), Xt~I(1) ; 那么 的左边Δ Y t~I(0) ,右边的Δ X t ~I(0) ,因此,只有Y与X协整,才能保证右边也是I(0)。
因此,建立误差修正模型,需要
首先对变量进行协整分析,以发现变量之间的协整关系,即长期均衡关系,并以这种关系构成误差修正项。然后建立短期模型,将误差修正项看作一个解释变量,连同其它反映短期波动的解释变量一起,建立短期模型,即误差修正模型。
(2)Engle-Granger两步法
由协整与误差修正模型的的关系,可以得到误差修正模型建立的E-G两步法: 第一步,进行协整回归(OLS法),检验变量间的协整关系,估计协整向量(长期均衡关系参数); 第二步,若协整性存在,则以第一步求到的残差作为非均衡误差项加入到误差修正模型中,并用OLS法估计相应参数。 需要注意的是:在进行变量间的协整检验时,如有必要可在协整回归式中加入趋势项,这时,对残差项的稳定性检验就无须再设趋势项。 另外,第二步中变量差分滞后项的多少,可以残差项序列是否存在自相关性来判断,如果存在自相关,则应加入变量差分的滞后项。
(3)直接估计法
也可以采用打开误差修整模型中非均衡误差项括号的方法直接用OLS法估计模型。 但仍需事先对变量间的协整关系进行检验。
如对双变量误差修正模型
可打开非均衡误差项的括号直接估计下式:
这时短期弹性与长期弹性可一并获得。 需注意的是,用不同方法建立的误差修正模型结果也往往不一样。
参考文献
- ↑ 1.0 1.1 计量经济学.第九章,第三节 协整与误差修正模型.华南师范大学,经济管理学院.课件
-
相关文章