罗氏几何实际意义
罗氏几何实际意义:罗氏几何在天体理论有着广泛的应用。罗巴切夫斯基几何,也称双曲几何,波利亚·罗巴切夫斯基几何或罗氏几何,是一种独立于欧几里得几何的一种几何公理系统。双曲几何的公理系统和欧氏几何的公理系统不同之处在于欧几里得几何的“第五公设”。在这种公理系统中,经过演绎推理,可以证明一系列和欧氏几何内容不同的新的几何命题,比如三角形的内角和小于180度。
-
相关文章
罗氏几何实际意义:罗氏几何在天体理论有着广泛的应用。罗巴切夫斯基几何,也称双曲几何,波利亚·罗巴切夫斯基几何或罗氏几何,是一种独立于欧几里得几何的一种几何公理系统。双曲几何的公理系统和欧氏几何的公理系统不同之处在于欧几里得几何的“第五公设”。在这种公理系统中,经过演绎推理,可以证明一系列和欧氏几何内容不同的新的几何命题,比如三角形的内角和小于180度。