事实上,当黑洞“吞食”其他天体时,吸入的物质在掉入视界面前会产生一个围绕黑洞旋转的吸积盘。当气体朝着黑洞落下被加热到数十亿度高温时,会发出强烈的辐射,会让事件视界看起来像“剪影”。
电影《星际穿越》中的黑洞,电影艺术地表现了吸积盘的形态
我们说回EHT项目的观测目标——人马座A*。这个超大质量黑洞位于银河系中心。尽管它比太阳重了400万倍,但因为这个黑洞距离我们太遥远(约两万六千光年),仍然很不容易看到。看到人马座A*所需的分辨率是哈勃空间望远镜的2000倍。EHT项目组这样形容其观测难度:相当于在纽约看清一个位于洛杉矶的高尔夫球上的每个小洞。
观测黑洞视界的最佳波段约为1毫米,因为气体在这个波段的辐射最明亮,而且无线电波也可以不被阻挡地从银河系中心传播到地球。接近黑洞时,无线电波就像是池塘里的圆形涟漪,但是当其到达地球时,这些涟漪已经成为平面状。在这个波长上为黑洞“拍照”,需要口径像地球一样大的望远镜。
这恰恰利于发挥射电望远镜“集团作战”的优势——天文学家将相隔一定距离的多台射电望远镜观测同一方位,甚至可以用多台较小的望远镜得到超过大型望远镜的精度。这种模式被称为甚长基线干涉测量(Very—long—center interferometry,简称VLBI)。
EHT项目使用到的望远镜包括:位于南极的SPT;位于智利的ALMA;位于智利APEX;位于墨西哥的LMT;位于美国亚利桑那州的SMT;位于夏威夷的JCMT;位于夏威夷的SMA;位于西班牙的IRAM30m。(多说一句,这个项目还在不断加新,比如位于格陵兰岛的GLT。在今后的观测中也会大显身手。)
这其中,最关键的成员要属位于智利的ALMA,它的加入将EHT的灵敏度提高了十倍。
EHT利用世界不同角落的射电望远镜,组成网络来模拟“地球级”望远镜。每一个射电望远镜都收集并记录来自于黑洞附近的无线电波信号,然后再将数据集成,并计算出事件视界的图像。
为了得到清晰的图像,必须保证无线电信号到达每个望远镜的时间极其精确。
观测期间记录的数据量也是海量。一次普通的五天观测期间,每座望远镜会搜集约500TB的数据,整个数组产生的数据约7PB(等于7000TB),将装满1000至2000个硬盘。
这么多的数据已经不可能靠网络传递,EHT用最原始,也是最可靠的办法——把硬盘用飞机运到位于美国马萨诸塞州的MIT海斯塔克天文台以及位于德国波恩的马克斯普朗克电波天文研究所进行处理。
在那里,超级计算机矫正光波抵达不同望远镜的时间差,并把所有数据集成。这些经过校准的资料被用来合成黑洞照片。这些工作并不容易,“洗照片”的时间花了一年多,直到今天,我们才获得这张照片。而该项研究,或许会完善我们对黑洞、引力,甚至是对宇宙的认知。